Abstract
<div class="section abstract"><div class="htmlview paragraph">Due to the recent progress in electrification, lithium-ion batteries have been widely used for electric and hybrid vehicles. Lithium-ion batteries exhibit high energy density and high-power density which are critical for vehicle development with high driving range enhanced performance. However, high battery temperature can negatively impact the battery life, performance, and energy delivery. In this paper, we developed and applied an analytical algorithm to estimate battery life-based vehicle level testing. A set of vehicle level tests were selected to represent customer duty cycles. Thermal degradation models are applied to estimate battery capacity loss during driving and park conditions. Due to the sensitivity of Lithium-Ion batteries to heat, the effect of high ambient temperatures throughout the year is considered as well. The analysis provides an estimate of the capacity loss due to calendar and cyclic effects throughout the battery life. Based on this analysis, appropriate thermal management can be implemented to mitigate the impact of high temperature on battery life.</div></div>
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献