A Comprehensive Method to Evaluate Ride Comfort of Autonomous Vehicles under Typical Braking Scenarios: Testing, Simulation and Analysis

Author:

Zheng BinshuangORCID,Hong Zhengqiang,Tang Junyao,Han Meiling,Chen JiayingORCID,Huang XiaomingORCID

Abstract

To highlight the advantages of autonomous vehicles (AVs) in modern traffic, it is necessary to investigate the sensing requirement parameters of the road environment during the vehicle braking process. Based on the texture information obtained using a field measurement, the braking model of an AV was built in Simulink and the ride comfort under typical braking scenarios was analyzed using CarSim/Simulink co-simulation. The results showed that the proposed brake system for the AV displayed a better performance than the traditional ABS when considering pavement adhesion characteristics. The braking pressure should be controlled to within the range of 4 MPa~6 MPa on a dry road, while in wet road conditions, the pressure should be within 3 MPa~4 MPa. When steering braking in dry road conditions, the duration of the “curve balance state” increased by about 57.14% compared with wet road conditions and the recommended curve radius was about 100 m. The slope gradient had a significant effect on the initial braking speed and comfort level. Overall, the ride comfort evaluation method was proposed to provide theoretical guidance for AV braking strategies, which can help to complement existing practices for road condition assessment.

Funder

the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3