Comparative Analysis of Machine-Learning Models for Recognizing Lane-Change Intention Using Vehicle Trajectory Data

Author:

Yuan Renteng1,Ding Shengxuan2,Wang Chenzhu2

Affiliation:

1. Jiangsu Key Laboratory of Urban ITS, School of Transportation, Southeast University, Nanjing 210000, China

2. Department of Civil, Environmental and Construction Engineering, University of Central Florida, 12800 Pegasus Dr #211, Orlando, FL 32816, USA

Abstract

Accurate detection and prediction of the lane-change (LC) processes can help autonomous vehicles better understand their surrounding environment, recognize potential safety hazards, and improve traffic safety. This study focuses on the LC process, using vehicle trajectory data to select a model for identifying vehicle LC intentions. Considering longitudinal and lateral dimensions, the information extracted from vehicle trajectory data includes the interactive effects among target and adjacent vehicles (54 indicators) as input parameters. The LC intention of the target vehicle serves as the output metric. This study compares three widely recognized machine-learning models: support vector machines (SVM), ensemble methods (EM), and long short-term memory (LSTM) networks. The ten-fold cross-validated method was used for model training and evaluation. Classification accuracy and training complexity were used as critical metrics for evaluating model performance. A total of 1023 vehicle trajectories were extracted from the CitySim dataset. The results indicate that, with an input length of 150 frames, the XGBoost and LightGBM models achieve an impressive overall classification performance of 98.4% and 98.3%, respectively. Compared to the LSTM and SVM models, the results show that the two ensemble models reduce the impact of Types I and III errors, with an improved accuracy of approximately 3.0%. Without sacrificing recognition accuracy, the LightGBM model exhibits a sixfold improvement in training efficiency compared to the XGBoost model.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3