Compression of a Deep Competitive Network Based on Mutual Information for Underwater Acoustic Targets Recognition

Author:

Shen Sheng,Yang HonghuiORCID,Sheng Meiping

Abstract

The accuracy of underwater acoustic targets recognition via limited ship radiated noise can be improved by a deep neural network trained with a large number of unlabeled samples. However, redundant features learned by deep neural network have negative effects on recognition accuracy and efficiency. A compressed deep competitive network is proposed to learn and extract features from ship radiated noise. The core idea of the algorithm includes: (1) Competitive learning: By integrating competitive learning into the restricted Boltzmann machine learning algorithm, the hidden units could share the weights in each predefined group; (2) Network pruning: The pruning based on mutual information is deployed to remove the redundant parameters and further compress the network. Experiments based on real ship radiated noise show that the network can increase recognition accuracy with fewer informative features. The compressed deep competitive network can achieve a classification accuracy of 89.1 % , which is 5.3 % higher than deep competitive network and 13.1 % higher than the state-of-the-art signal processing feature extraction methods.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CA_MobileNetV2 for Underwater Acoustic Target Recognition;2023 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC);2023-11-14

2. MSLEFC: A low-frequency focused underwater acoustic signal classification and analysis system;Engineering Applications of Artificial Intelligence;2023-08

3. An Underwater Acoustic Target Recognition Method Based on AMNet;IEEE Geoscience and Remote Sensing Letters;2023

4. An Improving Recognition Accuracy of Underwater Acoustic Targets based on Gated Recurrent Unit(GRU) Neural network Method;2022 1st International Conference on Computational Science and Technology (ICCST);2022-11-09

5. Self-supervised acoustic representation learning via acoustic-embedding memory unit modified space autoencoder for underwater target recognition;The Journal of the Acoustical Society of America;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3