Mega Flood Inundation Analysis and the Selection of Optimal Shelters

Author:

Han Daegun,Kim DeokhwanORCID,Kim KyunghunORCID,Wang Won-Joon,Jung JaewonORCID,Kim Hung SooORCID

Abstract

In recent decades, extreme storm events due to climate change have frequently occurred worldwide, a few of which have even occurred consecutively; we class such rainfall events as mega events. That is to say, if the inter-arrival time between rainfall events with a 100-year frequency is less than the IETD (Inter-Event Time Definition), the event can be considered a mega event. Therefore, the aim of this study was to implement flood inundation analysis using the hypothetical mega event from two consecutively occurring events of 100-year frequency, and select the optimal shelters using a developed method for minimizing casualties from floods. The Gyeongan stream basin, which is a tributary of the Namhan River in Korea, was selected as the study area. This study calculates mega flood discharge using the SSARR (Stream Synthesis and Reservoir Regulation) model, and conducts a flood inundation analysis of mega floods via the level pool method and the HEC-GeoRAS model. An inundation map was constructed, and the inundated area was classified into three zones and five administrative districts. Sixteen shelters were selected as candidates based on the criteria of the local government safety management plans and the Guidelines for Establishing the Disaster Relief Plan of 2013. To evaluate the candidates for evacuation in each district, we selected seven evaluation indicators from the shelter criteria of several countries, and calculated the weights of the indicators using the Analytic Hierarchy Process (AHP) method. As a result, four optimal shelters were selected in the study area. The results of the study can be used as the basic information for analyzing mega natural disaster events and inundation, and for establishing evacuation shelters, which are one of the non-structural flood protection measures.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference43 articles.

1. Climate Change and Disaster Risk Redcution,2008

2. Classification of Localized Heavy Rainfall Events in South Korea

3. Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm

4. Calibration and Estimation of Parameter for Storage Function Model;Kim;J. Korean Soc. Civ. Eng.,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3