Effects of Climate Change on the Carbon Sequestration Potential of Forest Vegetation in Yunnan Province, Southwest China

Author:

Zhou RuiwuORCID,Zhang Yiping,Peng Mingchun,Jin Yanqiang,Song Qinghai

Abstract

Ongoing climate changes reportedly affect the potential distribution and carbon sequestration potential (CSP) of forest vegetation. The combined effects of increasing temperature and decreasing precipitation on these features of forest vegetation are poorly understood. In this study, classification and regression tree (CART) models were used to predict the potential distribution and estimate the CSP of forest vegetation in Yunnan Province, Southwest China, under different simulation scenarios. The minimum temperature of the coldest month (TMW) was the main factor limiting the suitable habitat of all forest vegetation types except for warm–temperate coniferous (WTC) forests. When the temperature increased by 1 °C and the precipitation decreased by 20%, the potential distribution area of the 7 forest vegetation types decreased by 12.41% overall. The potential distribution of WTC forests was the least sensitive to temperature increases and precipitation decreases. The CSP of vegetation was higher (1187.69 TgC) under the constant temperature and 10% precipitation decrease scenario than the CSP of vegetation under the 2 °C temperature increase and constant precipitation scenario (647.24 TgC). Specifically, the highest CSP (1337.88 TgC) was observed under the 1 °C temperature increase and 10% precipitation decrease scenario, and the lowest (617.91 TgC) occurred under the constant temperature and 20% precipitation decrease scenario. In summary, the forest vegetation in Yunnan Province has a high CSP under climate change, and the combined effect of increased temperature and decreased precipitation can increase the CSP of forest vegetation in Yunnan Province. This finding is important for improving scientific decision making and policy planning.

Funder

周瑞伍

Publisher

MDPI AG

Subject

Forestry

Reference75 articles.

1. The influence of temperature and precipitation on the vegetation dynamics of the tropical island of Hainan

2. Climate change and carbon sequestration in forest ecosystems;Hui,2017

3. Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses;Watson,1996

4. Modeling distribution changes of vegetation in China under future climate change

5. Projections of suitable habitat for rare species under global warming scenarios

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3