Research on Forest Carbon Sequestration Based on FSC Model and DeepAR Algorithm

Author:

Xu Yin-di1ORCID

Affiliation:

1. School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China

Abstract

Forestry resources play an irreplaceable role in solving the problem of climate change. Forest managers to find a balance between carbon sinks and forest products, decisions must therefore take into account many aspects of forest value. This paper clarifies that forest carbon sequestration is mainly influenced by three aspects: human, climate, and nonclimatic physical factors, constructs a model for estimating the carbon sequestration rate of forest ecosystems based on forest age and the logistic growth equation, and combines human behaviour and climate influencing factors to make comprehensive corrections to the carbon sequestration rate of forest ecosystems per unit area. A model for calculating the carbon sequestration rate over time in a forest system was developed, which combined with the DeepAR Algorithm to obtain carbon sequestration. Then, this paper then assesses the various values of the forest, dividing the 25 factors affecting forest value assessment into five indices to establish a model of the forest ecosystem value assessment system for application to forest value assessment under different conditions. After determining the index system, we use the EWM-CVM to integrate the indexes into the value index based on the forest ecosystem to propose a management plan. And the PSO-BP algorithm is used to determine the transition point for forest management in order to optimise the ecological value of the forest.

Funder

Education Revitalization Project of Anhui Province

Publisher

Hindawi Limited

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding, Classifying, and Valuing Ecosystem Services;Advances in Business Strategy and Competitive Advantage;2024-08-30

2. Forest management plans based on carbon sequestration models;Highlights in Science, Engineering and Technology;2023-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3