Fiber Bragg Grating Array for Shape Reconstruction in Structural Elements

Author:

Souza Edson A.,Macedo Leandro C.ORCID,Frizera AnselmoORCID,Marques CarlosORCID,Leal-Junior ArnaldoORCID

Abstract

This paper presents the development, analysis and application of a fiber Bragg grating (FBG) array for two-dimensional (2D) shape reconstruction in a cantilever beam. The structural elements made of Pinus wood and Nylon 6.0 were numerically analyzed using the finite element method for the strain distribution when constant loading is applied at the free end of the beam. In addition, the temperature compensation method is proposed to decouple the temperature cross-sensitivity in the deflection analysis. In this case, the temperature sensitivities of all sensing elements of the 5-FBG array were obtained. An additional FBG was encapsulated in a silicone mold for increased sensitivity and positioned in the clamping point in which deflection was negligible. Temperature compensation was achieved considering the temperature measured by the silicone-embedded FBG (sensitivity of 27.78 pm/°C) and the sensitivity of all five FBGs of the deflection-sensing array (9.14 pm/°C ± 0.33 pm/°C). In the deflection experiments, the sensors presented a high linearity, in which a determination coefficient (R2) higher than 0.995 was obtained in all of the analyzed cases. Furthermore, the 2D shape construction using the proposed sensor approach resulted in the elastic line estimation for all analyzed beams, where the experimental results were in agreement with the theoretical and numerical analysis with a R2 higher than 0.99 in all of the analyzed cases. Therefore, the proposed sensor array is a feasible approach for real-time shape reconstruction of structural elements with the advantages related to the possibility of direct embedment in the measured structure.

Funder

Fundação de Amparo à Pesquisa do Espírito Santo

Financiadora de Estudos e Projetos

National Council for Scientific and Technological Development

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3