IM2ELEVATION: Building Height Estimation from Single-View Aerial Imagery

Author:

Liu Chao-Jung,Krylov Vladimir A.ORCID,Kane Paul,Kavanagh Geraldine,Dahyot RozennORCID

Abstract

Estimation of the Digital Surface Model (DSM) and building heights from single-view aerial imagery is a challenging inherently ill-posed problem that we address in this paper by resorting to machine learning. We propose an end-to-end trainable convolutional-deconvolutional deep neural network architecture that enables learning mapping from a single aerial imagery to a DSM for analysis of urban scenes. We perform multisensor fusion of aerial optical and aerial light detection and ranging (Lidar) data to prepare the training data for our pipeline. The dataset quality is key to successful estimation performance. Typically, a substantial amount of misregistration artifacts are present due to georeferencing/projection errors, sensor calibration inaccuracies, and scene changes between acquisitions. To overcome these issues, we propose a registration procedure to improve Lidar and optical data alignment that relies on Mutual Information, followed by Hough transform-based validation step to adjust misregistered image patches. We validate our building height estimation model on a high-resolution dataset captured over central Dublin, Ireland: Lidar point cloud of 2015 and optical aerial images from 2017. These data allow us to validate the proposed registration procedure and perform 3D model reconstruction from single-view aerial imagery. We also report state-of-the-art performance of our proposed architecture on several popular DSM estimation datasets.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3