FusionHeightNet: A Multi-Level Cross-Fusion Method from Multi-Source Remote Sensing Images for Urban Building Height Estimation

Author:

Ma Chao123ORCID,Zhang Yueting12ORCID,Guo Jiayi12,Zhou Guangyao12,Geng Xiurui12

Affiliation:

1. Key Laboratory of Technology in Geo-Spatial Information Processing and Application Systems, Beijing 100190, China

2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Extracting buildings in urban scenes from remote sensing images is crucial for the construction of digital cities, urban monitoring, urban planning, and autonomous driving. Traditional methods generally rely on shadow detection or stereo matching from multi-view high-resolution remote sensing images, which is cost-intensive. Recently, machine learning has provided solutions for the estimation of building heights from remote sensing images, but challenges remain due to the limited observation angles and image quality. The inherent lack of information in a single modality greatly limits the extraction precision. This article proposes an advanced method using multi-source remote sensing images for urban building height estimation, which is characterized by multi-level cross-fusion, the multi-task joint learning of footprint extraction and height estimation, and semantic information to refine the height estimation results. The complementary and effective features of synthetic aperture radar (SAR) and electro-optical (EO) images are transferred through multi-level cross-fusion. We use the semantic information of the footprint extraction branch to refine the height estimation results, enhancing the height results from coarse to fine. Finally, We evaluate our model on the SpaceNet 6 dataset and achieve 0.3849 and 0.7231 in the height estimation metric δ1 and footprint extraction metric Dice, respectively, which indicate effective improvements in the results compared to other methods.

Funder

National Natural Science Foundation of China

Key Research and Development Program of the Aerospace Information Research Institute Chinese Academy of Sciences

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3