Automatic Crop Classification in Northeastern China by Improved Nonlinear Dimensionality Reduction for Satellite Image Time Series

Author:

Zhai YongguangORCID,Wang Nan,Zhang LifuORCID,Hao Lei,Hao Caihong

Abstract

Accurate and timely information on the spatial distribution of crops is of great significance to precision agriculture and food security. Many cropland mapping methods using satellite image time series are based on expert knowledge to extract phenological features to identify crops. It is still a challenge to automatically obtain meaningful features from time-series data for crop classification. In this study, we developed an automated method based on satellite image time series to map the spatial distribution of three major crops including maize, rice, and soybean in northeastern China. The core method used is the nonlinear dimensionality reduction technique. However, the existing nonlinear dimensionality reduction technique cannot handle missing data, and it is not designed for subsequent classification tasks. Therefore, the nonlinear dimensionality reduction algorithm Landmark–Isometric feature mapping (L–ISOMAP) is improved. The advantage of the improved L–ISOMAP is that it does not need to reconstruct time series for missing data, and it can automatically obtain meaningful featured metrics for classification. The improved L–ISOMAP was applied to Landsat 8 full-band time-series data during the crop-growing season in the three northeastern provinces of China; then, the dimensionality reduction bands were inputted into a random forest classifier to complete a crop distribution map. The results show that the area of crops mapped is consistent with official statistics. The 2015 crop distribution map was evaluated through the collected reference dataset, and the overall classification accuracy and Kappa index were 83.68% and 0.7519, respectively. The geographical characteristics of major crops in three provinces in northeast China were analyzed. This study demonstrated that the improved L–ISOMAP method can be used to automatically extract features for crop classification. For future work, there is great potential for applying automatic mapping algorithms to other data or classification tasks.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3