Evaluation of the Use of the 12 Bands vs. NDVI from Sentinel-2 Images for Crop Identification

Author:

Lozano-Tello Adolfo1ORCID,Siesto Guillermo1ORCID,Fernández-Sellers Marcos1ORCID,Caballero-Mancera Andres1ORCID

Affiliation:

1. Quercus Software Engineering Group, Universidad de Extremadura, 10003 Cáceres, Spain

Abstract

Today, machine learning applied to remote sensing data is used for crop detection. This makes it possible to not only monitor crops but also to detect pests, a lack of irrigation, or other problems. For systems that require high accuracy in crop identification, a large amount of data is required to generate reliable models. The more plots of and data on crop evolution used over time, the more reliable the models. Here, a study has been carried out to analyse neural network models trained with the Sentinel satellite’s 12 bands, compared to models that only use the NDVI, in order to choose the most suitable model in terms of the amount of storage, calculation time, accuracy, and precision. This study achieved a training time gain of 59.35% for NDVI models compared with 12-band models; however, models based on 12-band values are 1.96% more accurate than those trained with the NDVI alone when it comes to making predictions. The findings of this study could be of great interest to administrations, businesses, land managers, and researchers who use satellite image data mining techniques and wish to design an efficient system, particularly one with limited storage capacity and response times.

Funder

FEDER interadministrative collaboration agreement

Regional Government of Extremadura

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3