Figuring Method of High Convergence Ratio for Pulsed Ion Beams Based on Frequency-Domain Parameter Control

Author:

Xie Lingbo,Tian Ye,Shi Feng,Zhou Gang,Guo Shuangpeng,Zhu Zhe,Song Ci,Tie Guipeng

Abstract

The continuous phase plate (CPP) provides excellent beam smoothing and shaping impacts in the inertial confinement fusion application. However, due to the features of its dispersion, its surface gradient is frequently too large (>2 μm/cm) to process. When machining a large gradient surface with continuous ion beam figuring (IBF), the acceleration of the machine motion axis cannot fulfill the appropriate requirements, and the machining efficiency is further influenced by the unavoidable extra removal layer. The pulsed ion beam (PIB) discretizes the ion beam by incorporating frequency-domain parameters, resulting in a pulsed beam with a controlled pulse width and frequency and avoiding the extra removal layer. This research evaluates the processing convergence ability of IBF and PIB for the large gradient surface using simulation and experiment. The findings reveal that PIB offers obvious advantages under the same beam diameter. Compared with the convergence ratio (γ = 2.02) and residuals (RMS = 184.36 nm) of IBF, the residuals (RMS = 27.48 nm) of PIB are smaller, and the convergence ratio (γ = 8.47) is higher. This work demonstrates that PIB has better residual convergence in large gradient surface processing. It is expected to realize ion beam machining with a higher convergence ratio.

Funder

Natural Science Foundation of Hunan Prov.

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3