Comparative Physiological and Transcriptomic Analyses Reveal Mechanisms of Improved Osmotic Stress Tolerance in Annual Ryegrass by Exogenous Chitosan

Author:

Zhao ,Pan ,Zhou ,Yang ,Meng ,Zhang

Abstract

Water deficit adversely affects the growth and productivity of annual ryegrass (Lolium multiflorum Lam.). The exogenous application of chitosan (CTS) has gained extensive interests due to its effect on improving drought resistance. This research aimed to determine the role of exogenous CTS on annual ryegrass in response to water stress. Here, we investigated the impact of exogenous CTS on the physiological responses and transcriptome changes of annual ryegrass variety “Tetragold” under osmotic stress induced by exposing them to 20% polyethylene glycol (PEG)-6000. Our experimental results demonstrated that 50 mg/L exogenous CTS had the optimal effect on promoting seed germination under osmotic stress. Pre-treatment of annual ryegrass seedlings with 500 mg/L CTS solution reduced the level of electrolyte leakage (EL) as well as the contents of malondialdehyde (MDA) and proline and enhanced the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbic acid peroxidase (APX) under osmotic stress. In addition, CTS increased soluble sugars and chlorophyll (Chl) content, net photosynthetic rate (A), stomatal conductance (gs), water use efficiency (WUE), and transpiration rate (E) in annual ryegrass seedlings in response to three and six days of osmotic stress. Transcriptome analysis further provided a comprehensive understanding of underlying molecular mechanisms of CTS impact. To be more specific, in contrast of non-treated seedlings, the distinct changes of gene expressions of CTS-treated seedlings were shown to be tightly related to carbon metabolism, photosynthesis, and plant hormone. Altogether, exogenous CTS could elicit drought-related genes in annual ryegrass, leading to resistance to osmotic stress via producing antioxidant enzymes and maintaining intact cell membranes and photosynthetic rates. This robust evidence supports the potential of the application of exogenous CTS, which will be helpful for determining the suitability and productivity of agricultural crops.

Funder

Sichuan Province Science and Technology Support Program

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3