Chitosan and cyanobacterial biomass accounting physiological and biochemical development of winter wheat (Triticum aestivum L.) under nutrient stress conditions

Author:

Molnár Zoltán1,Lamnganbi Mutum1ORCID,Solomon Wogene1,Janda Tibor2

Affiliation:

1. Albert Kázmér Faculty of Mosonmagyaróvár (Agricultural and Food Sciences) Széchenyi István University Győr‐Mosonmagyaróvár Hungary

2. Agricultural Institute, Centre for Agricultural Research Martonvásár Hungary

Abstract

AbstractIn the spirit of getting back to nature and using science to increase crop productivity without posing any threat to the environment, researchers are paying attention to making natural products alternative sources of nutrients for plants at affordable prices. On top of this, chitosan and cyanobacteria have become popular in agriculture as metabolic enhancers, biofertilizers, and antimicrobial properties. Cyanobacteria are known to possess biostimulating properties while chitosan is well known for its inherent biological properties. With the aim of minimizing the application of nitrogen, this experiment was conducted for the first time to check if the application of chitosan, microalgae, or both with 50% nitrogen can balance the nutrient requirement for different physiological and biochemical development as effectively as a 100% nitrogen dose. The data were recorded only for the early vegetative stages, as the seeds were non‐vernalized. The basic parameters recorded were hexose content, chlorophyll a, chlorophyll b, total phenol content, and relative water content (RWC). In most of the parameters, comparable results were found between the control (with a 100% nitrogen recommended dose) and other treatments (where either microalga, chitosan, or both were added), whereas it was clearly shown that 50% of recommended nitrogen doses reduce the hexose, chlorophyll, and RWCs. Thus, the treatments were effective in supplementing the developmental requirements. Therefore, the combined use of chitosan and cyanobacteria on crops significantly lowers nitrogen fertilization, increases photosynthesis, enhances resistance to water stress, and enhances antioxidant activity in modern agriculture.

Publisher

Wiley

Subject

Plant Science,Soil Science,Agricultural and Biological Sciences (miscellaneous)

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3