PipeMEM: A Framework to Speed Up BWA-MEM in Spark with Low Overhead

Author:

Zhang LingqiORCID,Liu Cheng,Dong ShoubinORCID

Abstract

(1) Background: DNA sequence alignment process is an essential step in genome analysis. BWA-MEM has been a prevalent single-node tool in genome alignment because of its high speed and accuracy. The exponentially generated genome data requiring a multi-node solution to handle large volumes of data currently remains a challenge. Spark is a ubiquitous big data platform that has been exploited to assist genome alignment in handling this challenge. Nonetheless, existing works that utilize Spark to optimize BWA-MEM suffer from higher overhead. (2) Methods: In this paper, we presented PipeMEM, a framework to accelerate BWA-MEM with lower overhead with the help of the pipe operation in Spark. We additionally proposed to use a pipeline structure and in-memory-computation to accelerate PipeMEM. (3) Results: Our experiments showed that, on paired-end alignment tasks, our framework had low overhead. In a multi-node environment, our framework, on average, was 2.27× faster compared with BWASpark (an alignment tool in Genome Analysis Toolkit (GATK)), and 2.33× faster compared with SparkBWA. (4) Conclusions: PipeMEM could accelerate BWA-MEM in the Spark environment with high performance and low overhead.

Funder

Guangdong Natural Science Foundation

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SparkFlow: Towards High-Performance Data Analytics for Spark-based Genome Analysis;2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid);2022-05

2. Analytical Pipelines for the GBS Analysis;Genotyping by Sequencing for Crop Improvement;2022-04

3. Parental folate deficiency induces birth defects in mice accompanied with increased de novo mutations;Cell Discovery;2022-02-22

4. Multi-Omics Characterization of Circular RNA-Encoded Novel Proteins Associated With Bladder Outlet Obstruction;Frontiers in Cell and Developmental Biology;2022-01-07

5. CircRNA expression profiling of PBMCs from patients with hepatocellular carcinoma by RNA‑sequencing;Experimental and Therapeutic Medicine;2021-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3