Abstract
Real-time prediction of remaining useful life (RUL) is one of the most essential works inprognostics and health management (PHM) of the micro-switches. In this paper, a lineardegradation model based on an inverse Kalman filter to imitate the stochastic deterioration processis proposed. First, Bayesian posterior estimation and expectation maximization (EM) algorithm areused to estimate the stochastic parameters. Second, an inverse Kalman filter is delivered to solvethe errors in the initial parameters. In order to improve the accuracy of estimating nonlinear data,the strong tracking filtering (STF) method is used on the basis of Bayesian updating Third, theeffectiveness of the proposed approach is validated on an experimental data relating tomicro-switches for the rail vehicle. Additionally, it proposes another two methods for comparisonto illustrate the effectiveness of the method with an inverse Kalman filter in this paper. Inconclusion, a linear degradation model based on an inverse Kalman filter shall deal with errors inRUL estimation of the micro-switches excellently.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献