Abstract
It is generally believed that evapotranspiration at night is too miniscule to be considered. Thus, few studies focus on the nocturnal evapotranspiration (ETN) in alpine region. In this study, based on the half-hour eddy and meteorological data of the growing season (from May to September) in 2019, we quantified the ETN of alpine desert (AD), alpine meadow (AM), alpine meadow steppe (AMS), and alpine steppe (AS) in the Qinghai Lake Basin and clarified the different response of evapotranspiration to climate variables in daytime and nighttime with the variation of elevation. The results show that: (1) ETN accounts for 9.88~15.08% of total daily evapotranspiration and is relatively higher in AMS (15.08%) and AD (12.13%); (2) in the daytime, net radiation (Rn), temperature difference (TD), vapor pressure difference (VPD), and soil moisture have remarkable influence on evapotranspiration, and Rn and VPD are more important at high altitudes, while TD is the main factor at low altitudes; (3) in the nighttime, VPD and wind speed (WS) control ETN at high altitudes, and TD and WS drive ETN at low altitudes. Our results are of great significance in understanding ETN in the alpine regions and provide reference for further improving in the evapotranspiration estimation model.
Funder
National Natural Science Foundation of China
Strategic Priority Research Program of the Chinese Academy of Sciences
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献