Abstract
Shapes and rise velocities of single air bubbles rising through stagnant water confined inside an annular channel were investigated by means of experiments and numerical simulations. Fast video imaging and image processing were used for the experiments, whilst the numerical simulations were carried out using the volume of fluid method and the open-source package OpenFOAM. The confinement of the annular channel did not affect the qualitative behavior of the bubbles, which exhibited a wobbling rise dynamic similar to that observed in bubbles rising through unconfined liquids. The effect of the confinement on the shape and rise velocity was evident; the bubbles were less deformed and rose slower in comparison with bubbles rising through unconfined liquids. The present data and numerical simulations, as well as the data collected from the literature for use here, indicate that the size, shape, and rise velocity of single bubbles are closely linked together, and prediction methods that fail to recognize this perform poorly. This study and the limited evidence documented in the literature indicate that the confinement effects observed in non-circular channels of complex shape are more complicated than those observed with circular tubes, and much less well understood.
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Reference57 articles.
1. Bubbles, Drops, and Particles;Clift,2005
2. Bubble Formation and Bubble Rise Velocity in Gas−Liquid Systems: A Review
3. Quasi-steady shape and drag of deformable bubbles and drops
4. Effect of wall proximity on the rate of rise of single air bubbles in a quiescent liquid
5. Hydrodynamique Des Dispersions. II. Effet de Paroi. Mouvement d’une Goutte Ou d’une Bulle Dans Un Fluide Immobile Contenu Dans Un Tube Vertical de Petit Diamètre;Salami;Genie Chim.,1965
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献