Bubble dynamics under the influence of the Marangoni force induced by a stratified field of contamination

Author:

Mahmoudi Sadra,Saeedipour Mahdi,Hlawitschka Mark W.

Abstract

AbstractThe Marangoni effect assumes significance in bubbly flows when temperature or concentration gradients exist in the domain. This study investigated the hydrodynamics of single bubbles under the influence of the Marangoni force induced by stratified fields of dissolved sugar, providing a numerical framework for examining these phenomena. A laboratory-scale bubble column and high-speed imaging were utilized to analyze the bubble behavior. The OpenFOAM-based geometric volume of the fluid solver was extended by incorporating the solutocapillary Marangoni effect, and a passive scalar transport equation for the sugar concentration was solved. The results revealed that small bubbles entering regions with elevated sugar concentrations experienced deceleration, transitioning into linear paths, while those departing from regions with high sugar concentrations exhibited fluctuations and meandering. Furthermore, the concentration gradient leads larger bubbles to meander throughout the entire column, without a notable increase in their velocity. The intensity of these behaviors is governed by the magnitude of the Marangoni force. The findings provide a better understanding of single bubble hydrodynamics in complex environments.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3