Abstract
Flooding has become the natural disaster that causes the greatest losses, with urban flooding restricting the healthy development of cities. The ability to assess a city’s resilience to flooding is very important and would contribute to improving resilience and also help to inform planning and development. The aim of this study was to determine the key urban flood resilience indicators for three different Chinese cities (Wuhan, Nanjing, and Hefei) and to prioritize these for each city. A combined interpretive structure and network analysis method (ISM-ANP) model was used to evaluate and analyze the selected evaluation indicators. A four-level urban flood resilience evaluation network model was constructed to determine the interdependence between indicators and to calculate the priorities of the flood resilience indicators for the three cities. Overall, rescue capacity was found to be extremely important and was defined as the most important index. For Wuhan, indicators related to the distribution of waters were found to be more important, while for Nanjing, spatial planning and spatial structure of land use were found to be key priorities. In Hefei, the level of investment in infrastructure and the level of public resources occupy a more important position. The framework presented in this study contributes to the understanding of urban flood resilience and has the potential to be extended to other natural hazards.
Funder
National Natural Science Foundation of China
Youth Foundation of Education Department of Hubei Province
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献