Forecasting of Typhoon-Induced Wind-Wave by Using Convolutional Deep Learning on Fused Data of Remote Sensing and Ground Measurements

Author:

Wei Chih-ChiangORCID,Chang Hao-Chun

Abstract

Taiwan is an island, and its economic activities are primarily dependent on maritime transport and international trade. However, Taiwan is also located in the region of typhoon development in the Northwestern Pacific Basin. Thus, it frequently receives strong winds and large waves brought by typhoons, which pose a considerable threat to port operations. To determine the real-time status of winds and waves brought by typhoons near the coasts of major ports in Taiwan, this study developed models for predicting the wind speed and wave height near the coasts of ports during typhoon periods. The forecasting horizons range from 1 to 6 h. In this study, the gated recurrent unit (GRU) neural networks and convolutional neural networks (CNNs) were combined and adopted to formulate the typhoon-induced wind and wave height prediction models. This work designed two wind speed prediction models (WIND-1 and WIND-2) and four wave height prediction models (WAVE-1 to WAVE-4), which are based on the WIND-1 and WIND-2 model outcomes. The Longdong and Liuqiu Buoys were the experiment locations. The observatory data from the ground stations and buoys, as well as radar reflectivity images, were adopted. The results indicated that, first, WIND-2 has a superior wind speed prediction performance to WIND-1, where WIND-2 can be used to identify the temporal and spatial changes in wind speeds using ground station data and reflectivity images. Second, WAVE-4 has the optimal wave height prediction performance, followed by WAVE-3, WAVE-2, and WAVE-1. The results of WAVE-4 revealed using the designed models with in-situ and reflectivity data directly yielded optimal predictions of the wind-based wave heights. Overall, the results indicated that the presented combination models were able to extract the spatial image features using multiple convolutional and pooling layers and provide useful information from time-series data using the GRU memory cell units. Overall, the presented models could exhibit promising results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3