Development of a prediction system for precipitation- and wind-causing typhoons affecting the Korean peninsula using observational data

Author:

Kim Minyeong,Won Seonghee,Lee Hyunsoo

Abstract

Introduction: When the forecasted typhoon track differs from the numerical model’s prediction, the estimated precipitation and wind from the model may not be reliable. Typically, forecasters receive numerical model forecasts with a delay of 4 h or more in calculation time. However, a more timely reference of precipitation and wind forecasts is required in an emergency with an approaching typhoon. Analyses of the observational data of typhoon-related characteristics, such as heavy rainfall and strong winds, from 1997 to 2021 revealed that their distribution areas are considerably affected by typhoon tracks. In this study, we developed a precipitation and wind prediction system based on the observational data of the typhoons that affected the Korean Peninsula.Methods: Typhoon tracks were categorized into west-coast landfalls, southeast landfalls, and those passing the Korea Strait. Each category affects the Korean Peninsula differently in terms of rainfall and wind. We devised a system that predicts these patterns based on incoming typhoon tracks. We can make forecasts by comparing the approaching typhoons to previous instances and analyzing their center, movement direction, and size. Observations from these past typhoons were averaged to produce a forecast grid for each new typhoon.Results: Our system, validated from 2019 to 2022, showed a wind speed root-mean-square error of 3.37 m/s and a precipitation accuracy index of 0.72. For comparison, traditional numerical models yielded 5.04 m/s and 0.75, respectively. This indicates that our system is comparably efficient and computationally less demanding.Discussion: Our system’s strength is its ability to offer real-time typhoon forecasts, often faster than numerical models. However, its dependence on historical data limits its predictive power for atypical weather scenarios. It is essential to consider integrating ensemble models with these observations for enhanced accuracy. Since 2022, this system has been operational at the Korea Meteorological Administration, showing consistent reliability in forecasting.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3