Application and Research of Swirling Curtain Dust Collection Technology in Mines

Author:

Li Gang,Hu JinhuaORCID,Hao XiaoliORCID,Qu Huaidi

Abstract

During the production process in mines, large amounts of dusts are produced. The dusts pose a potential hazard to the health and safety of miners. Traditional dust removal methods, such as ventilation, water sprays and foam technology, cannot completely solve the problem of dust pollution, due to low efficiency or high consumption of water or large resistance (>2000 Pa). Therefore, a swirling curtain dust collector (SCDC) was proposed to collect the dust in mines. The device was combined swirling atomization with spray curtain for dust removal. The performance of SCDC was investigated. According to the results, the optimum working condition of the device was: air pressure: 0.35 MPa, water volume: 30 L/h; liquid–gas ratio: 0.15 L/m3; air speed: 14–16 m/s. Under these operation parameters, the suppression efficiency of total dust and respirable dust were over 99.8% and 97%. The proposed device was applied at transfer stations of Luohe Metal Mine in Anhui, China. The application results showed that the dust concentration at the outlet of SCDC in the transfer station is lower than 20 mg/m3, which is stipulated by Chinese standard GB 28661-2012. The proposed device is expected to replace the traditional Venturi wet scrubber in mines.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. The mechanism and application of dry dust removal technology in long tunnel construction;Zhao;Mod. Tunn. Technol.,2014

2. Temporal and Spatial Distribution of Respirable Dust After Blasting of Coal Roadway Driving Faces: A Case Study

3. Application of foam technology for dust control in underground coal mine

4. New Respirable Dust Suppression Systems for Coal Mines

5. Simulation experiment on multi-direction whirling air curtain preventing dust diffusion;Nie;J. Cent. South Univ.,2016

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3