A Novel Dense Full-Field Displacement Monitoring Method Based on Image Sequences and Optical Flow Algorithm

Author:

Deng GuojunORCID,Zhou Zhixiang,Shao ShuaiORCID,Chu Xi,Jian Chuanyi

Abstract

This paper aims to achieve a large bridge structural health monitoring (SHM) efficiently, economically, credibly, and holographically through noncontact remote sensing (NRS). For these purposes, the author proposes a NRS method for collecting the holographic geometric deformation of test bridge, using static image sequences. Specifically, a uniaxial automatic cruise acquisition device was designed to collect static images on bridge elevation under different damage conditions. Considering the strong spatiotemporal correlations of the sequence data, the relationships between six fixed fields of view were identified through the SIFT algorithm. On this basis, the deformation of the bridge structure was obtained by tracking a virtual target using the optical flow algorithm. Finally, the global holographic deformation of the test bridge was derived. The research results show that: The output data of our NRS method are basically consistent with the finite-element prediction (maximum error: 11.11%) and dial gauge measurement (maximum error: 12.12%); the NRS method is highly sensitive to the actual deformation of the bridge structure under different damage conditions, and can capture the deformation in a continuous and accurate manner. The research findings lay a solid basis for structure state interpretation and intelligent damage identification.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Review on China’s Bridge Engineering Research: 2014;China J. Highw. Transp.,2014

2. Review of Highway Bridge Inspection and Condition Assessment;He;China J. Highw. Transp.,2017

3. Detection of Surface Crack in Building Structures Using Image Processing Technique with an Improved Otsu Method for Image Thresholding;Nhat-Duc;Adv. Civ. Eng.,2018

4. Data Science and Engineering Structural Health Monitoring;Li;J. Eng. Mech.,2015

5. Compressive Sampling for Accelerometer Signals in Structural Health Monitoring;Bao;Struct. Health Monit.,2011

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3