High-Precision Monitoring Method for Bridge Deformation Measurement and Error Analysis Based on Terrestrial Laser Scanning

Author:

Zhou Yin1ORCID,Zhu Jinyu2,Zhao Lidu2,Hu Guotao2ORCID,Xin Jingzhou2,Zhang Hong1ORCID,Yang Jun1

Affiliation:

1. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

In bridge structure monitoring and evaluation, deformation data serve as a crucial basis for assessing structural conditions. Different from discrete monitoring points, spatially continuous deformation modes provide a comprehensive understanding of deformation and potential information. Terrestrial laser scanning (TLS) is a three-dimensional deformation monitoring technique that has gained wide attention in recent years, demonstrating its potential in capturing structural deformation models. In this study, a TLS-based bridge deformation mode monitoring method is proposed, and a deformation mode calculation method combining sliding windows and surface fitting is developed, which is called the SWSF method for short. On the basis of the general characteristics of bridge structures, a deformation error model is established for the SWSF method, with a detailed quantitative analysis of each error component. The analysis results show that the deformation monitoring error of the SWSF method consists of four parts, which are related to the selection of the fitting function, the density of point clouds, the noise of point clouds, and the registration accuracy of point clouds. The error caused by point cloud noise is the main error component. Under the condition that the noise level of point clouds is determined, the calculation error of the SWSF method can be significantly reduced by increasing the number of points of point clouds in the sliding window. Then, deformation testing experiments were conducted under different measurement distances, proving that the proposed SWSF method can achieve a deformation monitoring accuracy of up to 0.1 mm. Finally, the proposed deformation mode monitoring method based on TLS and SWSF was tested on a railway bridge with a span of 65 m. The test results showed that in comparison with the commonly used total station method, the proposed method does not require any preset reflective markers, thereby improving the deformation monitoring accuracy from millimeter level to submillimeter level and transforming the discrete measurement point data form into spatially continuous deformation modes. Overall, this study introduces a new method for accurate deformation monitoring of bridges, demonstrating the significant potential for its application in health monitoring and damage diagnosis of bridge structures.

Funder

ChongQing Postdoctoral Science Foundation

ChongQing Science Fund for Distinguished Young Scholars

Chongqing Natural Science Foundation of China

Science and Technology Project of Sichuan Provincial Transportation Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3