Abstract
Recently, we often see the environment where many one-to-one Wireless Local Area Networks (WLANs) exist in a small area. In this environment, the network throughput of certain WLAN reduces significantly because of the interference from other networks (i.e., inter-network interference). The inter-network interference is the effect of carrier-sensing activities when there are ongoing transmissions in neighbor networks. This paper presents analytical expressions using airtime concept, which newly take into account the inter-network interference, for network throughputs of WLANs. There are existing works that similarly address the WLAN’s carrier-sensing duration. However, they either consider a simple interference model or assume the simultaneous transmission time is negligible. Different from them, we consider the significant impact of simultaneous transmission. As a result, our analytical model can precisely express each network carrier-sensing duration by subtracting the simultaneous transmission time. More specifically, we have successfully obtained each network throughput by expressing frame-existence probabilities concerning each network’s End Device (ED). We also confirm the validity of the analysis by comparison with simulation. The analytical results and the simulation results agree well.
Funder
Japan Society for the Promotion of Science
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献