A Study of the Active Access-Point Configuration Algorithm under Channel Bonding to Dual IEEE 802.11n and 11ac Interfaces in an Elastic WLAN System for IoT Applications

Author:

Roy Sujan Chandra1ORCID,Funabiki Nobuo1,Rahman Md. Mahbubur2,Wu Bin1,Kuribayashi Minoru1ORCID,Kao Wen-Chung3

Affiliation:

1. Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan

2. Department Electrical and Electronic Engineering, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh 2224, Bangladesh

3. Department of Electrical Engineering, National Taiwan Normal University, Taipei 106, Taiwan

Abstract

Currently, Internet of Things (IoT) has become common in various applications, including smart factories, smart cities, and smart homes. In them, wireless local-area networks (WLANs) are widely used due to their high-speed data transfer, flexible coverage ranges, and low costs. To enhance the performance, the WLAN configuration should be optimized in dense WLAN environments where multiple access points (APs) and hosts exist. Previously, we have studied the active AP configuration algorithm for dual interfaces using IEEE802.11n and 11ac protocols at each AP under non-channel bonding (non-CB). In this paper, we study the algorithm considering the channel bonding (CB) to enhance its capacity by bonding two channels together. To improve the throughput estimation accuracy of the algorithm, the reduction factor is introduced at contending hosts for the same AP. For evaluations, we conducted extensive experiments using the WIMENT simulator and the testbed system using Raspberry Pi 4B APs. The results show that the estimated throughput is well matched with the measured one, and the proposal achieves the higher throughput with a smaller number of active APs than the previous configurations.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3