Mixing Transport Mechanism of Three-Phase Particle Flow Based on CFD-DEM Coupling

Author:

Ge Man1,Chen Juntong1,Zhao Longyun1,Zheng Gaoan2

Affiliation:

1. Special Equipment Institute, Hangzhou Vocational and Technical College, Hangzhou 310018, China

2. College of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

Abstract

The mixing transport courses of three-phase particle flows exist in some industrial applications, such as metallurgy material extraction, lithium electric slurry dispersion, and material mixing in the high-end chemical industry. Its mixing transport mechanism is a fluid–structure coupling dynamic issues with intensive shear and nonlinear characteristics, making the real-time prediction of the flow field face challenges. To address the above problem, a bidirectional fluid–structure coupling three-phase particle flow dynamic model is built based on the coupled computational fluid dynamics and discrete element model (CFD-DEM) to explore the mixing transport mechanism. An interphase coupling solution method is utilized to solve the interaction effects of the fluid and particle. Research results illustrate that the proposed method modeling can well reveal the mixing transport mechanism of the three-phase particle flows. Due to the additive effects of stirring speed, stirring blade size, and stirring blade structure, the flow field near the blade has a high-velocity gradient change, while the flow field away from the stirring blade has no significant change. When the particle material settles and accumulates to a certain extent, the particle movement is blocked, and the stirring speed of the particle material near the blade is reduced. The mixing effect of the particle material will be reduced near the wall. It can provide a valuable reference for particle flow transport and pattern identification and support technical support for lithium electric homogenate mixing, chemical extraction, and pharmacy process regulation.

Funder

Open Research Project of Robot Technology and Intelligent Manufacturing Equipment Engineering Laboratory of Jiangsu Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3