Affiliation:
1. School of AI Convergence, Sungshin Women’s University, 34 da-gil 2, Bomun-ro, Seongbuk-gu, Seoul 02844, Republic of Korea
Abstract
Wi-Fi fingerprint indoor localization uses Wi-Fi signal strength measurements obtained from a number of access points. This method needs manual data collection across a positioning area and an annotation process to label locations to the measurement sets. To reduce the cost and effort, this paper proposes a Wi-Fi Semi-Supervised Generative Adversarial Network (SSGAN), which produces artificial but realistic trainable fingerprint data. The Wi-Fi SSGAN is based on a deep learning, which is extended from GAN in a semi-supervised learning manner. It is designed to create location-labeled Wi-Fi fingerprint data, which is different to unlabeled data generation by a normal GAN. Also, the proposed Wi-Fi SSGAN network includes a positioning model, so it does not need a external positioning method. When the Wi-Fi SSGAN is applied to a multi-story landmark localization, the experimental results demonstrate a 35% more accurate performance in comparison to a standard supervised deep neural network.
Funder
Sungshin Women’s University Research