Dramatic Loss of Agricultural Land Due to Urban Expansion Threatens Food Security in the Nile Delta, Egypt

Author:

Radwan Taher M.,Blackburn G. Alan,Whyatt J. Duncan,Atkinson Peter M.ORCID

Abstract

Egypt has one of the largest and fastest growing populations in the world. However, nearly 96% of the total land area is uninhabited desert and 96% of the population is concentrated around the River Nile valley and the Delta. This unbalanced distribution and dramatically rising population have caused severe socio-economic problems. In this research, 24 land use/land cover (LULC) maps from 1992 to 2015 were used to monitor LULC changes in the Nile Delta and quantify the rates and types of LULC transitions. The results show that 74,600 hectares of fertile agricultural land in the Nile Delta (Old Lands) was lost to urban expansion over the 24 year period at an average rate of 3,108 ha year-1, whilst 206,100 hectares of bare land was converted to agricultural land (New Lands) at an average rate of 8,588 ha year-1. A Cellular Automata-Markov (CA-Markov) integrated model was used to simulate future alternative LULC change scenarios. Under a Business as Usual scenario, 87,000 hectares of land transitioned from agricultural land to urban areas by 2030, posing a threat to the agricultural sector sustainability and food security in Egypt. Three alternative future scenarios were developed to promote urban development elsewhere, hence, with potential to preserve the fertile soils of the Nile Delta. A scenario which permitted urban expansion into the desert only preserved the largest amount of agricultural land in the Nile Delta. However, a scenario that encouraged urban expansion into the desert and adjacent to areas of existing high population density resulted in almost the same area of agricultural land being preserved. The alternative future scenarios are valuable for supporting policy development and planning decisions in Egypt and demonstrating that continued urban development is possible while minimising the threats to environmental sustainability and national food security.

Funder

Newton Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3