Modeling Urban Encroachment on the Agricultural Land of the Eastern Nile Delta Using Remote Sensing and a GIS-Based Markov Chain Model

Author:

Bratley Kelsee,Ghoneim Eman

Abstract

Historically, the Nile Delta has played an integral part in Egyptian civilization, as its fertile soils have been cultivated for centuries. The region offers a lush oasis among the expansive arid climate of Northern Africa; however, in recent decades, many anthropogenic changes to the environment have jeopardized Egypt’s agricultural productivity. Political instability and lack of sufficient regulations regarding urban growth and encroachment have put agricultural land in the area at risk. Advanced geospatial techniques were used to assess the rate at which urban areas are increasing within the region. A hybrid classification of Landsat satellite imagery for the eastern sector of the Nile Delta, between the years 1988 and 2017, was conducted to map major land-use and land-cover (LULC) classes. The statistical change analysis revealed that urban areas increased by 222.5% over the study period (29 years). Results indicated that urban areas are encroaching mainly on established agricultural lands within the Nile Delta. Most of the change has occurred within the past nine years, where approximately 235.60 km2 of the cultivated lands were transitioned to urban. Nonetheless, at the eastern delta flank, which is bordered by desert, analysis indicated that agricultural lands have experienced a considerable growth throughout the study period due to a major desert reclamation effort. Areas most at risk from future urban expansion were identified. A simulation of future urban expansion, using a Markov Chain algorithm, indicated that the extent to which urban area is simulated to grow in the region is 16.67% (277.3 km2) and 37.82% (843 km2) by the year 2026, and 2050, respectively. The methods used in this study are useful in assessing the rate of urban encroachment on agricultural lands and can be applied to similar at-risk areas in the regions if appropriate site-specific modifications are considered.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3