Improved Spectral Detection of Nitrogen Deficiency and Yellow Mosaic Disease Stresses in Wheat Using a Soil Effect Removal Algorithm and Machine Learning

Author:

Feng Ziheng12,Zhang Haiyan12,Duan Jianzhao12,He Li12,Yuan Xinru1,Gao Yuezhi1,Liu Wandai1,Li Xiao3,Feng Wei12

Affiliation:

1. National Engineering Research Center for Wheat/State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China

2. CIMMYT-China Wheat and Maize Joint Research Center, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China

3. College of Science, Henan Agriculture University, Zhengzhou 450046, China

Abstract

Wheat yellow mosaic disease is a low-temperature and soil-borne disease. Crop infection by the yellow mosaic virus can lead to severe yield and economic losses. It is easily confused with nitrogen deficiency based on the plant’s morphological characteristics. Timely disease detection and crop management in the field require the precise identification of crop stress types. However, the detection of crop stress is often underappreciated. Wheat nitrogen deficiency and yellow mosaic disease were investigated in the field and wheat physiological and biochemical experiments were conducted to collect agronomic indicators, four years of reflectance spectral data at green-up and jointing were collected, and then studies for the detection of nitrogen deficiency and yellow mosaic disease stresses were carried out. The continuous removal (CR), first-order derivative (FD), standard normal variate (SNV), and spectral separation of soil and vegetation (3SV) preprocessing methods and 96 spectral indices were evaluated. The threshold method and variance inflation factor (TVIF) were used as feature selection methods combined with machine learning to develop a crop stress detection method. The results show that the most sensitive wavelengths are found in the 725–1000 nm region, while the sensitivity of the spectrum in the 400–725 nm region is lower. The PRI670,570, B, and RARSa spectral indices can detect nitrogen deficiency and yellow leaf disease stress, and the OA and Kappa values are 93.87% and 0.873, respectively, for PRI670,570, which is the best index. A 3SV-TVIF-SVM stress detection method was then proposed, using OA and Kappa values of 96.97% and 0.931, respectively, for field data validation. The results of the study can provide technical support and a theoretical basis for the accurate control of yellow mosaic disease and nitrogen fertilizer management in the field.

Funder

Postdoctoral Science Foundation Project of China

National Key Research Project of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3