Spectral Detection of Peanut Southern Blight Severity Based on Continuous Wavelet Transform and Machine Learning

Author:

Guo Wei1ORCID,Sun Heguang12,Qiao Hongbo1,Zhang Hui1,Zhou Lin3,Dong Ping1,Song Xiaoyu2ORCID

Affiliation:

1. College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China

2. Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China

3. College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China

Abstract

Peanut southern blight has a severe impact on peanut production and is one of the most devastating soil-borne fungal diseases. We conducted a hyperspectral analysis of the spectral responses of plants to peanut southern blight to provide theoretical support for detecting the severity of the disease via remote sensing. In this study, we collected leaf-level spectral data during the winter of 2021 and the spring of 2022 in a greenhouse laboratory. We explored the spectral response mechanisms of diseased peanut leaves and developed a method for assessing the severity of peanut southern blight disease by comparing the continuous wavelet transform (CWT) with traditional spectral indices and incorporating machine learning techniques. The results showed that the SVM model performed best and was able to effectively detect the severity of peanut southern blight when using CWT (WF770~780, 5) as an input feature. The overall accuracy (OA) of the modeling dataset was 91.8% and the kappa coefficient was 0.88. For the validation dataset, the OA was 90.5% and the kappa coefficient was 0.87. These findings highlight the potential of this CWT-based method for accurately assessing the severity of peanut southern blight.

Funder

The Henan Provincial Science and Technology Major Project

National Natural Science Foundation of China

The Joint Fund of Science and Technology Research Development program (Cultivation project of preponderant discipline) of Henan Province, China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3