Robust Feature-Guided Generative Adversarial Network for Aerial Image Semantic Segmentation against Backdoor Attacks

Author:

Wang Zhen1,Wang Buhong1,Zhang Chuanlei2,Liu Yaohui3ORCID,Guo Jianxin4

Affiliation:

1. School of Information and Navigation, Air Force Engineering University, FengHao East Road, Xi’an 710082, China

2. School of Artificial Intelligence, Tianjin University of Science and Technology, Dagu South Road, Hexi District, Tianjin 300457, China

3. School of Surveying and Geo-Informatics, Shandong Jianzhu University, FengMing Road, LiCheng District, Jinan 250101, China

4. School of Electronic Information, Xijing University, XiJing Road, Chang’an District, Xi’an 710123, China

Abstract

Profiting from the powerful feature extraction and representation capabilities of deep learning (DL), aerial image semantic segmentation based on deep neural networks (DNNs) has achieved remarkable success in recent years. Nevertheless, the security and robustness of DNNs deserve attention when dealing with safety-critical earth observation tasks. As a typical attack pattern in adversarial machine learning (AML), backdoor attacks intend to embed hidden triggers in DNNs by poisoning training data. The attacked DNNs behave normally on benign samples, but when the hidden trigger is activated, its prediction is modified to a specified target label. In this article, we systematically assess the threat of backdoor attacks to aerial image semantic segmentation tasks. To defend against backdoor attacks and maintain better semantic segmentation accuracy, we construct a novel robust generative adversarial network (RFGAN). Motivated by the sensitivity of human visual systems to global and edge information in images, RFGAN designs the robust global feature extractor (RobGF) and the robust edge feature extractor (RobEF) that force DNNs to learn global and edge features. Then, RFGAN uses robust global and edge features as guidance to obtain benign samples by the constructed generator, and the discriminator to obtain semantic segmentation results. Our method is the first attempt to address the backdoor threat to aerial image semantic segmentation by constructing the robust DNNs model architecture. Extensive experiments on real-world scenes aerial image benchmark datasets demonstrate that the constructed RFGAN can effectively defend against backdoor attacks and achieve better semantic segmentation results compared with the existing state-of-the-art methods.

Funder

Natural Science Foundation of China

the National Natural Science Foundation of China

the Natural Science Foundation of Shandong Province

the Shandong Top Talent Special Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3