Abstract
Subterranean termite activity can increase the hydraulic conductivity and water infiltration of filling soil, and therefore affects the stability of an earth embankment and subsequent safety. As a physical barrier for sustainable termite management, NaCl-laden soil barrier (NLSB) is a promising alternative for subterranean termite control in earth embankments. This novel technology can prevent tunneling and penetration of subterranean termites into the interior of an embankment and has been widely employed for more than 20 years in Zhejiang Province, China. The efficacy and longevity of NLSB depend on the long-term presence of NaCl concentration in soil barriers. The aim of this study is to develop an understanding of water flow and salt transport in NLSB based on the two-dimensional Richards’ equation and convection dispersion equation using the HYDRUS software package. Conceptual and numerical models of NLSB are modeled using scenario analysis according to water level fluctuations, saturated hydraulic conductivity, and rainfall infiltration conditions. Furthermore, the center and spread variance of a solute mass over a 100-year period are quantified using moment analysis. As flood frequency, saturated hydraulic conductivity, and rainfall infiltration flux increase, salt desalination in NLSB significantly increases. When the rainfall infiltration flux is 1% of the annual average rainfall, the total amount of salt transport and leaching can increase by 55%. Moreover, these results facilitate better long-term sustainable management of existing sites and optimal design of future NLSBs.
Funder
Public Welfare Technology Application Research Project of Zhejiang Province in China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference57 articles.
1. The oldest known record of social insects
2. Treatise on the Isoptera of the World
3. Connecting Termite Researchers from Around the World at ICE 2016
4. Fauna Sinica, Insecta, Vol. 17, Isoptera;Huang,2000
5. Advance in the development of attractive lignocelluloses materials of termite in China;Hu;Chin. J. Hyg. Insect. Equip.,2018
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献