Semantic Communities from Graph-Inspired Visual Representations of Cityscapes

Author:

Balaska Vasiliki1ORCID,Theodoridis Eudokimos1,Papapetros Ioannis-Tsampikos1ORCID,Tsompanoglou Christoforos1,Bampis Loukas2ORCID,Gasteratos Antonios1ORCID

Affiliation:

1. Department of Production and Management Engineering, Democritus University of Thrace, Vas. Sophias 12, 671 32 Xanthi, Greece

2. Department of Electrical and Computer Engineering, Democritus University of Thrace, University Campus Kimmeria, 671 00 Xanthi, Greece

Abstract

The swift development of autonomous vehicles raises the necessity of semantically mapping the environment by producing distinguishable representations to recognise similar areas. To this end, in this article, we present an efficient technique to cut up a robot’s trajectory into semantically consistent communities based on graph-inspired descriptors. This allows an agent to localise itself in future tasks under different environmental circumstances in an urban area. The proposed semantic grouping technique utilizes the Leiden Community Detection Algorithm (LeCDA), which is a novel and efficient method of low computational complexity and exploits semantic and topometric information from the observed scenes. The presented experimentation was carried out on a novel dataset from the city of Xanthi, Greece (dubbed as Gryphonurban urban dataset), which was recorded by RGB-D, IMU and GNSS sensors mounted on a moving vehicle. Our results exhibit the formulation of a semantic map with visually coherent communities and the realisation of an effective localisation mechanism for autonomous vehicles in urban environments.

Funder

European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation

Publisher

MDPI AG

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantic-based visual vocabulary for loop closure detection;2023 IEEE International Conference on Imaging Systems and Techniques (IST);2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3