Synthetic Aperture Radar Radio Frequency Interference Suppression Method Based on Fusing Segmentation and Inpainting Networks

Author:

Fang Fuping1,Tian Yuanrong1,Dai Dahai1,Xing Shiqi1

Affiliation:

1. The School of Electronic Science, National University of Defense Technology, Changsha 410073, China

Abstract

Synthetic Aperture Radar (SAR) is a high-resolution imaging sensor commonly mounted on platforms such as airplanes and satellites for widespread use. In complex electromagnetic environments, radio frequency interference (RFI) severely degrades the quality of SAR images due to its widely varying bandwidth and numerous unknown emission sources. Although traditional deep learning-based methods have achieved remarkable results by directly processing SAR images as visual ones, there is still considerable room for improvement in their performance due to the wide coverage and high intensity of RFI. To address these issues, this paper proposes the fusion of segmentation and inpainting networks (FuSINet) to suppress SAR RFI in the time-frequency domain. Firstly, to weaken the dominance of RFI in SAR images caused by high-intensity interference, a simple CCN-based network is employed to learn and segment the RFI. This results in the removal of most of the original interference, leaving blanks that allow the targets to regain dominance in the overall image. Secondly, considering the wide coverage characteristic of RFI, a U-former network with global information capture capabilities is utilized to learn the content covered by the interference and fill in the blanks created by the segmentation network. Compared to the traditional Transformer, this paper enhances its global information capture capabilities through shift-windows and down-sampling layers. Finally, the segmentation and inpainting networks are fused together through a weighted parameter for joint training. This not only accelerates the learning speed but also enables better coordination between the two networks, leading to improved RFI suppression performance. Extensive experimental results demonstrate the substantial performance enhancement of the proposed FuSINet. Compared to the PISNet+, the proposed attention mechanism achieves a 2.49 dB improvement in peak signal-to-noise ratio (PSNR). Furthermore, compared to Uformer, the FuSINet achieves an additional 4.16 dB improvement in PSNR.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3