Synthetic-Aperture Radar Radio-Frequency Interference Suppression Based on Regularized Optimization Feature Decomposition Network

Author:

Fang Fuping1,Li Haoliang1ORCID,Meng Weize1ORCID,Dai Dahai1,Xing Shiqi1

Affiliation:

1. School of Electronic Science, National University of Defense Technology, Changsha 410073, China

Abstract

Synthetic-aperture radar (SAR) can work in all weather conditions and at all times, and satellite-borne radar has the characteristics of short revisiting period and large imaging width. Therefore, satellite-borne synthetic-aperture radar has been widely deployed, and the SAR images have been widely used in geographic mapping, radar interpretation, ship detection, and other fields. Satellite-borne synthetic-aperture radar is also susceptible to various types of intentional or unintentional interference during the imaging process, and because the interference is a direct wave, its power is much stronger than the wave reflected by targets. As a common interference pattern, radio-frequency interference widely exists in various satellite-borne synthetic-aperture radars, which seriously deteriorates SAR image quality. In order to solve the above problems, this paper proposes a feature decomposition network to suppress interference based on regularization optimization. The contributions of this work are as follows: 1. By analyzing the performance limitations of the existing methods, this work proposes a novel regularization method for radio-frequency interference suppression tasks. From the perspective of data distribution histograms and residual components, the proposed method eliminates the variable components introduced by common regularization, greatly reduces the difficulty of data mapping, and significantly improves its robustness and performance. 2. This work proposes a feature decomposition network, where the feature decomposition module contains two parts; one part only represents the interference signal, and the other part only represents the radar signal. The neurons representing the interference signal are discarded, and the neurons representing the radar signal are used as input for the subsequent network. A cosine similarity constraint is used to separate the interference from the network as much as possible. Finally, this method is validated on the MiniSAR dataset and Sentinel-1A dataset.

Publisher

MDPI AG

Reference54 articles.

1. A tutorial on synthetic aperture radar;Moreira;IEEE Geosci. Remote Sens. Mag.,2013

2. Fast shape parameter estimation of the complex generalized Gaussian distribution in SAR images;Leng;IEEE Geosci. Remote Sens. Lett.,2020

3. Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future;Mondini;Earth-Sci. Rev.,2021

4. A survey on the applications of convolutional neural networks for synthetic aperture radar: Recent advances;Oveis;IEEE Aerosp. Electron. Syst. Mag.,2021

5. A sidelobe-aware small ship detection network for synthetic aperture radar imagery;Zhou;IEEE Trans. Geosci. Remote Sens.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3