A Satellite View of the Wetland Transformation Path and Associated Drivers in the Greater Bay Area of China during the Past Four Decades

Author:

Sun Kun12ORCID,Yu Weiwei13

Affiliation:

1. Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources/Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361000, China

2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China

Abstract

As a highly productive and biologically diverse ecosystem, wetlands provide unique habitat for a wide array of plant and animal species. Owing to the strong disturbance by human activities and climate change, wetland degradation and fragmentation have become a common phenomenon across the globe. The Guangdong–Hong Kong–Macao Greater Bay Area (GBA) is a typical case. The GBA has experienced explosive growth in the population and economy since the early 1980s, which has resulted in complicated transitions between wetlands and non-wetlands. However, our knowledge about the transformation paths, associated drivers, and ecological influence of the GBA’s wetlands is still very limited. Taking advantage of the land use maps generated from Landsat observations over the period of 1980–2020, here, we quantified the spatiotemporal transformation paths of the GBA’s wetlands and analyzed the associated drivers and ecological influence. We found that the dominant transformation path between wetland and non-wetland was from wetland to built-up land, which accounted for 98.4% of total wetland loss. The primary transformation path among different wetland types was from coastal shallow water and paddy land to reservoir/pond, with the strongest transformation intensity in the 1980s. The driving forces behind the wetland change were found to vary by region. Anthropogenic factors (i.e., population growth and urbanization) dominated in highly developed cities, while climate factors and aquaculture had a greater influence in underdeveloped cities. The findings presented in this study will provide a reference for wetland management and planning in the GBA.

Funder

Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Re-sources/Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration

National Key R&D Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3