Ecological Protection Alone Is Not Enough to Conserve Ecosystem Carbon Storage: Evidence from Guangdong, China

Author:

Cui Lihan,Tang Wenwen,Zheng ShengORCID,Singh Ramesh P.ORCID

Abstract

The increase in atmospheric CO2 caused by land use and land cover change (LUCC) is one of the drivers of the global climate. As one of the most typical high-urbanization areas, the ecological conflicts occurring in Guangdong Province warrant urgent attention. A growing body of evidence suggests LUCC could guide the future ecosystem carbon storage, but most LUCC simulations are simply based on model results without full consistency with the actual situation. Fully combined with the territorial spatial planning project and based on the land use pattern in 2010 and 2020, we have used the Markov and Patch-generating Land Use Simulation (PLUS) model to simulate the future four land use scenarios: the Business as Usual (BU), Ecological Protection (EP), Farmland Protection (FP), and Economic Development (ED) scenario, and the ecosystem carbon storage was assessed by the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The results show that the built-up area experience further expansion in all scenarios, the largest scale happened in ED and the smallest in FP. Besides, the forest area in the EP scenario is the largest, while the land use pattern developed based on the previous circumstances in the BU scenario. Furthermore, the carbon storage plunged from 1619.21 Tg C in 2010 to 1606.60 Tg C in 2020, with a total decrease of 12.61 Tg C. Urban expansion caused 79.83% of total carbon losses, of which 31.56% came from farmland. In 2030, the carbon storage dropped in all scenarios, and their storage amount has a relationship of FP > BU > EP > ED. To better resolve the ecological problems and conserve ecosystem carbon storage, not only ecological protection but also the protection of the land near the city such as farmland protection strategies must be considered.

Funder

Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference63 articles.

1. IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions;Mora;Nat. Clim. Chang.,2018

3. IPCC (2014). Climate change 2014 Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

4. Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective;Hutyra;Earth’s Future,2014

5. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design;Lawrence;Geosci. Model Dev.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3