Abstract
In the field of Cyber-Physical Systems (CPS), there is a large number of machine learning methods, and their intrinsic hyper-parameters are hugely varied. Since no agreed-on datasets for CPS exist, developers of new algorithms are forced to define their own benchmarks. This leads to a large number of algorithms each claiming benefits over other approaches but lacking a fair comparison. To tackle this problem, this paper defines a novel model for a generation process of data, similar to that found in CPS. The model is based on well-understood system theory and allows many datasets with different characteristics in terms of complexity to be generated. The data will pave the way for a comparison of selected machine learning methods in the exemplary field of unsupervised learning. Based on the synthetic CPS data, the data generation process is evaluated by analyzing the performance of the methods of the Self-Organizing Map, One-Class Support Vector Machine and Long Short-Term Memory Neural Net in anomaly detection.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献