A Two-Axis Piezoresistive Force Sensing Tool for Microgripping

Author:

Tiwari BhawnathORCID,Billot MargotORCID,Clévy CédricORCID,Agnus JoëlORCID,Piat Emmanuel,Lutz PhilippeORCID

Abstract

Force sensing has always been an important necessity in making decisions for manipulation. It becomes more appealing in the micro-scale context, especially where the surface forces become predominant. In addition, the deformations happening at the very local level are often coupled, and therefore providing multi-axis force sensing capabilities to microgripper becomes an important necessity. The manufacturing of a multi-axis instrumented microgripper comprises several levels of complexity, especially when it comes to the single wafer fabrication of a sensing and actuation mechanism. To address these requirements, in this work, an instrumented two-axis force sensing tool is proposed, which can then be integrated with the appropriate actuators for microgripping. Indeed, based on the task, the gripper design and shape requirements may differ. To cover wide needs, a versatile manufacturing strategy comprising of the separate fabrication of the passive and sensing parts was especially investigated. At the microscale, signal processing brings additional challenges, especially when we are dealing with multi-axis sensing. Therefore, a proper device, with efficient and appropriate systems and signal processing integration, is highly important. To keep these requirements in consideration, a dedicated clean-room based micro-fabrication of the devices and corresponding electronics to effectively process the signals are presented in this work. The fabricated sensing part can be assembled with wide varieties of passive parts to have different sensing tools as well as grippers. This force sensing tool is based upon the piezoresistive principle, and is experimentally demonstrated with a sensing capability up to 9 mN along the two axes with a resolution of 20 μN. The experimental results validate the measurement error within 1%. This work explains the system design, its working principle, FEM analysis, its fabrication and assembly, followed by the experimental validation of its performance. Moreover, the use of the proposed sensing tool for an instrumented gripper was also discussed and demonstrated with a micrograsping and release task.

Funder

ANR COLAMIR Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Overview of Microrobotic Systems for Microforce Sensing;Annual Review of Control, Robotics, and Autonomous Systems;2024-07-10

2. Closed-loop control of microgripper system based on compliant mechanism;AIP Advances;2024-07-01

3. Rational Design of Flexible Mechanical Force Sensors for Healthcare and Diagnosis;Materials;2023-12-26

4. Towards Development of a Novel Variable Stiffness Instrumented Gripper;2023 11th International Conference on Control, Mechatronics and Automation (ICCMA);2023-11-01

5. Robotic-Based Selection, Manipulation and Characterization of 3D Microscale Particles with Complex Structures in SEM;2023 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS);2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3