Bioenergetic Profiling of the Differentiating Human MDS Myeloid Lineage with Low and High Bone Marrow Blast Counts

Author:

Poulaki AikateriniORCID,Katsila TheodoraORCID,Stergiou Ioanna E.ORCID,Giannouli Stavroula,Gόmez-Tamayo Jose Carlos,Piperaki Evangelia-Theophano,Kambas Konstantinos,Dimitrakopoulou Aglaia,Patrinos George P.ORCID,Tzioufas Athanasios G.,Voulgarelis Michael

Abstract

Myelodysplastic syndromes (MDS) encompass a very heterogeneous group of clonal hematopoietic stem cell differentiation disorders with malignant potential and an elusive pathobiology. Given the central role of metabolism in effective differentiation, we performed an untargeted metabolomic analysis of differentiating myeloid lineage cells from MDS bone marrow aspirates that exhibited <5% (G1) or ≥5% (G2) blasts, in order to delineate its role in MDS severity and malignant potential. Bone marrow aspirates were collected from 14 previously untreated MDS patients (G1, n = 10 and G2, n = 4) and age matched controls (n = 5). Following myeloid lineage cell isolation, untargeted mass spectrometry-based metabolomics analysis was performed. Data were processed and analyzed using Metabokit. Enrichment analysis was performed using Metaboanalyst v4 employing pathway-associated metabolite sets. We established a bioenergetic profile coordinated by the Warburg phenomenon in both groups, but with a massively different outcome that mainly depended upon its group mitochondrial function and redox state. G1 cells are overwhelmed by glycolytic intermediate accumulation due to failing mitochondria, while the functional electron transport chain and improved redox in G2 compensate for Warburg disruption. Both metabolomes reveal the production and abundance of epigenetic modifiers. G1 and G2 metabolomes differ and eventually determine the MDS clinical phenotype, as well as the potential for malignant transformation.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3