Abstract
Myelodysplastic syndromes (MDS) are acquired clonal stem cell disorders exhibiting ineffective hematopoiesis, dysplastic cell morphology in the bone marrow, and peripheral cytopenia at early stages; while advanced stages carry a high risk for transformation into acute myeloid leukemia (AML). Genetic alterations are integral to the pathogenesis of MDS. However, it remains unclear how these genetic changes in hematopoietic stem and progenitor cells (HSPCs) occur, and how they confer an expansion advantage to the clones carrying them. Recently, inflammatory processes and changes in cellular metabolism of HSPCs and the surrounding bone marrow microenvironment have been associated with an age-related dysfunction of HSPCs and the emergence of genetic aberrations related to clonal hematopoiesis of indeterminate potential (CHIP). The present review highlights the involvement of metabolic and inflammatory pathways in the regulation of HSPC and niche cell function in MDS in comparison to healthy state and discusses how such pathways may be amenable to therapeutic interventions.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献