Development of a Smart Portable Hypoxic Chamber with Accurate Sensing, Control and Visualization of In Vitro Cell Culture for Replication of Cancer Microenvironment

Author:

Ramachandramoorthy Harish12ORCID,Dang Tuan3,Srinivasa Ankitha1,Nguyen Kytai Truong12,Nguyen Phuc3

Affiliation:

1. Department of Bioengineering, University of Texas, Arlington, TX 76019, USA

2. Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

3. Department of Computer Science, University of Texas at Arlington, Arlington, TX 76019, USA

Abstract

Clinical resistance towards treatment is a major concern in cancer therapy. This is due to in vitro studies lacking essential microenvironmental aspects. Tumor-hypoxia is an important pathophysiological phenomenon in numerous malignant tumors. Various studies have shown the importance of a hypoxic microenvironment (HME) in cancer drug resistance and its effects on cellular signaling and metabolism pathways. Most drugs fail in transition from a laboratory to clinical trials because of the variability in the testing microenvironment conditions. It is, thus, very crucial that research work needs to replicate these conditions in vitro to test the drugs and/or drug carriers for cancer therapy. Previous works have used a portable hypoxia chamber to reduce the cell microenvironment to hypoxic conditions. These techniques lack reliability and consistency due to a lack of control and visualization. In this research, we developed a smart portable hypoxia chamber that could accurately control the oxygen inside the portable chamber and have a global visualization. The proposed hypoxia chamber provided ease of use with the ranges of 1% to 20% oxygen with increments of 0.5%, as well as reproducibility and accuracy. The chamber displayed great precision on reaching the set oxygen limit and a high stability in maintaining that set level of oxygen compared to the uncontrolled setup for extended durations (24 h). For instance, at a 2% oxygen level, our automated system maintained this level over 1400 min, whereas the oxygen level fluctuated up to 4.5% in the conventional hypoxic chamber. We have also demonstrated the pitfalls of uncontrolled and non-visualized hypoxia chamber setup and the dire need for our system. The hypoxia-induced factor (HIF-1α) expression in cancer cell lines was tested and compared between the conventional hypoxia setup and our automated hypoxia chamber. We observed that there was a twofold increase in HIF-1α expression in the automated controlled chamber compared to the conventional device. The device also provided real-time sensing, visualization and control of the chamber conditions, which could aid in complex in vitro studies.

Funder

Cancer Prevention & Research Institute of Texas (CPRIT) High-Impact/High-Risk Research Awards

National Institutes of Health (NIH) R15 Award

National Institutes of Health (NIH) R01 Award

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3