Pan-Cancer Analysis of Patient Tumor Single-Cell Transcriptomes Identifies Promising Selective and Safe Chimeric Antigen Receptor Targets in Head and Neck Cancer

Author:

Madan Sanna12,Sinha Sanju1,Chang Tiangen1,Gutkind J. Silvio34,Cohen Ezra E. W.35,Schäffer Alejandro A.1ORCID,Ruppin Eytan1

Affiliation:

1. Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD 20892, USA

2. Department of Computer Science, University of Maryland, College Park, MD 20742, USA

3. Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA

4. Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA

5. Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA

Abstract

Chimeric antigen receptor (CAR) T cell therapies have yielded transformative clinical successes for patients with blood tumors, but their full potential remains to be unleashed against solid tumors. One challenge is finding selective targets, which we define intuitively to be cell surface proteins that are expressed widely by cancer cells but minimally by healthy cells in the tumor microenvironment and other normal tissues. Analyzing patient tumor single-cell transcriptomics data, we first defined and quantified selectivity and safety scores of existing CAR targets for indications in which they are in clinical trials or approved. We then sought new candidate cell surface CAR targets that have better selectivity and safety scores than those currently being tested. Remarkably, in almost all cancer types, we could not find such better targets, testifying to the near optimality of the current target space. However, in human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSC), for which there is currently a dearth of existing CAR targets, we identified a total of twenty candidate novel CAR targets, five of which have both superior selectivity and safety scores. These newly identified cell surface targets lay a basis for future investigations that may lead to better CAR treatments in HNSC.

Funder

Intramural Research Program of the National Institutes of Health, NCI, CCR

NCI-UMD Partnership for Integrative Cancer Research Program

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3