Author:
Park Hyun-Soo,Lee Kwang-sig,Seo Bo-Kyoung,Kim Eun-Sil,Cho Kyu-Ran,Woo Ok-Hee,Song Sung-Eun,Lee Ji-Young,Cha Jaehyung
Abstract
This prospective study enrolled 147 women with invasive breast cancer who underwent low-dose breast CT (80 kVp, 25 mAs, 1.01–1.38 mSv) before treatment. From each tumor, we extracted eight perfusion parameters using the maximum slope algorithm and 36 texture parameters using the filtered histogram technique. Relationships between CT parameters and histological factors were analyzed using five machine learning algorithms. Performance was compared using the area under the receiver-operating characteristic curve (AUC) with the DeLong test. The AUCs of the machine learning models increased when using both features instead of the perfusion or texture features alone. The random forest model that integrated texture and perfusion features was the best model for prediction (AUC = 0.76). In the integrated random forest model, the AUCs for predicting human epidermal growth factor receptor 2 positivity, estrogen receptor positivity, progesterone receptor positivity, ki67 positivity, high tumor grade, and molecular subtype were 0.86, 0.76, 0.69, 0.65, 0.75, and 0.79, respectively. Entropy of pre- and postcontrast images and perfusion, time to peak, and peak enhancement intensity of hot spots are the five most important CT parameters for prediction. In conclusion, machine learning using texture and perfusion characteristics of breast cancer with low-dose CT has potential value for predicting prognostic factors and risk stratification in breast cancer patients.
Funder
the National Research Foundation of Korea
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献