Prediction of longitudinal clinical outcomes after acute myocardial infarction using a dynamic machine learning algorithm

Author:

Jeong Joo Hee,Lee Kwang-Sig,Park Seong-Mi,Kim So Ree,Kim Mi-Na,Chae Shung Chull,Hur Seung-Ho,Seong In Whan,Oh Seok Kyu,Ahn Tae Hoon,Jeong Myung Ho

Abstract

Several regression-based models for predicting outcomes after acute myocardial infarction (AMI) have been developed. However, prediction models that encompass diverse patient-related factors over time are limited. This study aimed to develop a machine learning-based model to predict longitudinal outcomes after AMI. This study was based on a nationwide prospective registry of AMI in Korea (n = 13,104). Seventy-seven predictor candidates from prehospitalization to 1 year of follow-up were included, and six machine learning approaches were analyzed. Primary outcome was defined as 1-year all-cause death. Secondary outcomes included all-cause deaths, cardiovascular deaths, and major adverse cardiovascular event (MACE) at the 1-year and 3-year follow-ups. Random forest resulted best performance in predicting the primary outcome, exhibiting a 99.6% accuracy along with an area under the receiver-operating characteristic curve of 0.874. Top 10 predictors for the primary outcome included peak troponin-I (variable importance value = 0.048), in-hospital duration (0.047), total cholesterol (0.047), maintenance of antiplatelet at 1 year (0.045), coronary lesion classification (0.043), N-terminal pro-brain natriuretic peptide levels (0.039), body mass index (BMI) (0.037), door-to-balloon time (0.035), vascular approach (0.033), and use of glycoprotein IIb/IIIa inhibitor (0.032). Notably, BMI was identified as one of the most important predictors of major outcomes after AMI. BMI revealed distinct effects on each outcome, highlighting a U-shaped influence on 1-year and 3-year MACE and 3-year all-cause death. Diverse time-dependent variables from prehospitalization to the postdischarge period influenced the major outcomes after AMI. Understanding the complexity and dynamic associations of risk factors may facilitate clinical interventions in patients with AMI.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3