Optimization of the Enrichment of Circulating Tumor Cells for Downstream Phenotypic Analysis in Patients with Non-Small Cell Lung Cancer Treated with Anti-PD-1 Immunotherapy

Author:

Papadaki Maria AORCID,Sotiriou Afroditi IORCID,Vasilopoulou Christina,Filika Maria,Aggouraki Despoina,Tsoulfas Panormitis G,Apostolopoulou Christina A,Rounis Konstantinos,Mavroudis Dimitrios,Agelaki Sofia

Abstract

The current study aimed at the optimization of circulating tumor cell (CTC) enrichment for downstream protein expression analyses in non-small cell lung cancer (NSCLC) to serve as a tool for the investigation of immune checkpoints in real time. Different enrichment approaches—ficoll density, erythrolysis, their combination with magnetic separation, ISET, and Parsortix—were compared in spiking experiments using the A549, H1975, and SKMES-1 NSCLC cell lines. The most efficient methods were tested in patients (n = 15) receiving immunotherapy targeting programmed cell death-1 (PD-1). Samples were immunofluorescently stained for a) cytokeratins (CK)/epithelial cell adhesion molecule (EpCAM)/leukocyte common antigen (CD45), and b) CK/programmed cell death ligand-1 (PD-L1)/ indoleamine-2,3-dioxygenase (IDO). Ficoll, ISET, and Parsortix presented the highest yields and compatibility with phenotypic analysis; however, at the patient level, they provided discordant CTC positivity (13%, 33%, and 60% of patients, respectively) and enriched for distinct CTC populations. IDO and PD-L1 were expressed in 44% and 33% and co-expressed in 19% of CTCs. CTC detection was associated with progressive disease (PD) (p = 0.006), reduced progression-free survival PFS (p = 0.007), and increased risk of relapse (hazard ratio; HR: 10.733; p = 0.026). IDO-positive CTCs were associated with shorter PFS (p = 0.039) and overall survival OS (p = 0.021) and increased risk of death (HR: 5.462; p = 0.039). The current study indicates that CTC analysis according to distinct immune checkpoints is feasible and may provide valuable biomarkers to monitor NSCLC patients treated with anti-PD-1 agents.

Funder

Hellenic Society of Medical Oncology

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3